
Probability theory 
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Deterministic systems: Future 

behavior of the system (events) 

can be predicted with a required 

accuracy; 

• Classical mechanical systems 

with known initial conditions  

Stochastic systems: Future behavior of the system 

(events) cannot be predicted with certainty; 

• Mechanical systems with incomplete knowledge 

of initial conditions (∆x, ∆v) or unknown external 

forces  

 

Probability distributions are assigned to stochastic 

systems to represent as much information about the 

system as possible. 

What predictions can we make about systems based on incomplete information? 



Probability theory for molecular systems 
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Molecular systems are deterministic so why do we need probability distributions to 

describe them?! Two cases apply: 

1) The system is too large or complex to determine and/or keep track of all 

mechanical variables and their time dependence 

2) In molecular simulations there is the opposite problem of too much information! 

Wikipedia: Kinetic theory of gases 

• To make predictions about the bulk behavior of the system, are the details of the 

motion of every single atom needed?  

• Are there average values of mechanical properties which capture the macroscopic 

behavior of the system? 

• Can we determine these macroscopic averages without knowing all the 

microscopic details? 



Probability distributions for molecular systems 
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1) What form do probability distributions take for molecular systems? How do they 

depend on positions, velocities, energies, … of the molecules? 

2) Is there a unique probability distribution for molecular variables for each system? 

3) How is the probability distribution affected by interactions of the system with the 

environment?  

• What are the properties of probability distributions? 

• How do probability distribution behave for large numbers of variables?   

Statistical mechanics gives us a methodology for constructing probability 

distributions for the mechanical properties, without having to solve for all the 

microscopic mechanical variables.  
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Probability distributions for systems with discrete variables 

Possible events (“event space”) 

are assigned numbers 

A probability is associated with 

each event 

• The outcome of an event cannot be predicted with certainty 

• Total number of possible outcomes of the measurement are finite (ν) 

Conditions a probability distribution must satisfy: 

1) For all events i assigned probabilities are positive:  

 P(i) ≥ 0 

 

2)  The sum of the probabilities add up to 1 
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The probability distribution represents our knowledge of the system: 



Examples of probability distributions for systems with discrete variables 
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• Physical events εi are assigned probabilities P(i) which reflect their nature as 

much as possible. The events are also assigned numbers. 
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Characterizing a probability distribution with discrete variables 
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1)   Average or expectation value for a distribution 
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Probability 

Note: The average of the distribution does not have to correspond to an event 

How can we characterize the distribution?  

“Measures” of the distribution: 

For the case of 1 die: 



  89.32

• 2nd moment of the distribution for the throw of one die 
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Characterizing probability distributions 
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• 2nd central moment (variance) 
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The standard deviation characterizes the width of a distribution 

Note: 
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2) “Moments” of a distribution (or the related “cumulants”) 
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• The average of any mathematical function of i for the distribution:  
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• The mth moment of a distribution 

• The mth central moment of a distribution 

Characterizing probability distributions 

Higher order moments of a distribution are required to fully characterize a 

distribution 
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Probability distributions with continuous variables 

• Stochastic variables (events) take continuous values within a range [xmin, xmax] 

• There are an infinite number of points on the real number axis, the probability of 

getting an exact value x from a measurement is mathematically 0.   
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Properties of the probability distribution P(x) for a continuous variable: 

1) All probabilities are positive 

For all x : P(x) ≥ 0 

2) The probability is normalized  
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xmin xmax 

An infinite number of x values are possible in the range 

Common ranges for variables: 

x 

   0 ↔ 1 

   0 ↔ + 

 ↔ + 

• Probability of observing the event between x and x+dx is given as P(x)dx where 

P(x) is the probability distribution for a continuous variable,  



Characterizing continuous probability distributions 

• The 2ne central moment or variance of the distribution 
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• Average or expectation value for a distribution 

• The 2nd moment of the distribution is 
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• The standard deviation of the distribution 
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Characterizing continuous probability distributions 
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• The mth central moment of the distribution 
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• The average of any function f(x) of x can be calculated for the distribution  
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• The mth moment of the distribution 
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x0: maximum of 

the distribution 

P
(x

) 
 

x – x0  

The Gaussian distribution 

is normalized 

The Gaussian distribution: a widely used continuous distribution function 

α: width parameter 
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Average of x in 

Gaussian distribution:  
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Variance of x in a 

Gaussian distribution:  

The Gaussian (“normal”) distribution function 

Note: the three distributions 

above have the same average, 

but not the same variance 
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See Appendices of Chapter 5 for integrals 

• Considered the “natural” or 

“normal” distribution function 

when no other information is 

known about the distribution of 

the variables 

P
(x
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α = 25 
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P(x)dx = Probability of observing the variable between x and x + dx 

Probabilities are determined 

between a small range of the 

variable at a point x 

P
(x

) 
 



Distributions functions of many independent variables 
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For a system with N variables x1, x2, …, xN we can have collective variables X, 

which are a property of the entire system 
 

PN(X) is the probability distribution of collective variable X.  

A simple case of a collective variable is the sum of the individual variables: 

    X = x1 + x2 + …+ xN 

• X  represents a “macrostate” or collective property of the system  

• The set of individual variables {x1, x2, …, xN} associated with a particular X 

are called the “microstate” 

What is PN(E) ? 

EN = ε1+ ε2 + …+ εN 

-This type of problem arises in molecular systems: What is the probability 

of the ideal gas system has an energy E  



Probability distributions with multiple independent stochastic variables 

Independent stochastic variables x1, x2, … xN  have distribution functions 
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The variables x1, x2, …,  xN  are similar in nature and have the same mathematical 

form for their probability distribution, P1(xi) 

The N-variable probability distribution is 

 P1(x1), P1(x2), …, P1(xN) 

 PN(x1,x2,…xN) = P1(x1)·P1(x2) ·…·P1(xN) 

1 2 1 1 1 2 1( ) ( , , , ) ( ) ( ) ( )N N N NP X P x x x P x P x P x 

The probability distribution for X =  x1 + x2 + …+ xN   is 

Note that different combinations of x1, x2, …, xN  can give the same X 

• Degeneracy 

PN(E)=∑ʹ P1(ε1) P1(ε2)…P1(εN)  

EN = ε1+ ε2 + …+ εN 



Two-variable distribution with independent variables 
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E = ε I+ ε II 

P2(E)=∑ʹ P1(εI)P1(εII) 

Role of two dice 

Possible individual events, (εI, εII) 

(microstates) 

Value of  E=εI+ εII 

(macrostate) 

Degeneracy of 

macrostate, Ω(E) 

P2(E) 
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Observed outcome variable is a sum: 

Observed probability is a product: 

Sum is over all ε I and ε II which give  

E = ε I+ ε II 
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Convolution of probabilities: Multi-variable distributions from one-variable 

distributions  

How do we determine the probability of a particular value of X from the role of the N 

separate dice? 

2 1 1 1 1 1 1
3

(4) (1) (3) (2) (2) (3) (1)
36

P P P P P P P   

Formalizing this expression for rolling any value: 

For two dice, what is the probability of rolling a 4? 

Prime shows sum only includes terms in the expansion where 

εI + εII = E 

All cases for which x1 + x2 = 4? 



Multivariable distributions with independent stochastic variables 
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Three dice  

Two dice 

One die 

Five dice 

Four dice 

Three dice  

Role of multiple dice 
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PN(X) with  

X = xI + xII + … + xN 

Note that the PN(X) 

distributions start to 

look Gaussian, even 

though the P1(x) are 

constant functions 

How does the behavior of the macrostate change with increasing numbers of 

variables? 



Central Limit Theorem: A general property of probability distributions for 

large numbers of stochastic variables 
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In the limit of large N, any “reasonable” one-variable distribution function P1(x) gives 

a Gaussian distribution for PN(X) where   X = x1 + x2 + … + xN 

Three dice  

Two dice 

One die 

Five dice 

Four dice 
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1) The average of the sum X is the sum of the averages of the individual variables: 
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2) The variance of X is the sum of the variances of the individual variables: 

Exercise: prove 

Exercise: prove 
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Averages for distributions with large numbers of stochastic variables 
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• The variance of the N-variable sum is the sum of the 1-variable variances 
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Properties of multi-variable probability distributions 
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The spread of an N variable distribution relative to the mean becomes smaller as 

the number of variables increases! 

If the distribution functions for individual variables are identical: 

• The average of the N-variable sum X is the sum of the 1-variable averages 

1N NN N    
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Convolution of continuous variable distribution functions 

How do we determine the probability of getting a particular value of X from the 

combining continuous variables x1 and x2? 

2 2 1 1( ) ( , ) ( ) ( )

I II I II

I II I II I II I II

X x x X dX X x x X dX

P X dX P x x dx dx P x P x dx dx
       

  

A similar expression for continuous variables: 

Subscript shows limits on the range of the integrals so that always xI + xII = X 

The constraint on the limits of the integral makes its solution difficult. 

 

The integral can be simplified with the use of the Dirac delta-function 
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In the present case, the Dirac-delta function with the argument a = (x1 + x2 – X) is : 

Delta function allows us to calculate the integral over xII: 

Final result for the convolution of independent variables: 

See Chapter 5 for examples of applying this relation to Gaussian distributions. See 

also next lectures. 

Integral over xII is 

non-zero only when  

xII = X - xI 

By substituting the form of P1 into the integral, it can be solved to give P2. 

By convoluting P2 with P1, we can obtain P3. Repeating the process gives PN. 


